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Abstract

In this paper, we consider the problem of finding locations of
several new facilities in an imbedded tree network with respect to
existing facilities at known locations so as to satisfy distance con-
straints, which impose upper bounds on distances between pairs of
facilities. It is known that the existence of a feasible solution
to the distance constraints is related to shortest paths through an
auxiliary network, which has as arc lengths the upper bounds on pairwise
facility distances. This relationship takes the form of necessary and
sufficient conditions, termed the separation conditions. We relate
"tight" separation conditions to the solution of multifacility minimax
location problems and efficient solutions to multiobjective multifacility
location problems. In addition, we provide a proof that the SLP algorithm
of (8] is in fact an algorithm of lowest order of computation for deter-

mining whether or not the distance constraints are consistent.




1. Introduction

Network location problems involve locating new facilities on a
network, such as a transport network, with respect to existing facil-
ities lying on the network at known locatioms. For such problems dis-
tances between facilities are of interest: these distances are actual
"shortest route distances" as determined from the network. Associated
with many network location problems is a collection of distance con-
straints. These distance constraints specify known upper bounds on
distances between pairs of faciiities (pairs of new facilities, and pairs
of new and existing facilities) so that the facilities will not be too
far apart from one another.

Distance constraints appear to be a recurring feature in network
location problems. In the problem of deciding where to locate a
fire station [18], it may be relevant to place restrictions on the
location via distance constraints so that the response time to the site
of any potential fire may not be too large. The location oé booster
pumps in a pipeline system might well involve distance constraints in
order to locate the pumps so that the pressure in the pipeline does.not
fall below a certain level. Also, certain minimax location problems on
networks have an equivaleat formulation in terms of distance constraints
[8], since typical objective functioms in such problems involve dis-
tances between facilities, permitting equivalent formulations with
distances as constraints.

Our work extends earlier results [8] obtained for distance
constraints for the case where the underlying network is a tree, that
is, it is connected, undirected, has positive arc lengths and has no

cycles. Such networks tend to occur when only a "sparse" network is
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justifiable because of limited need for the network or, alternatively,
when it is very expensive to provide redundant links (as in some road
networks). In addition, some pipeline, and associated electrical con-
trol networks, are tree networks [3].

We now give a brief overview of our main results; the necessary
notation and definitions appear in Section 2, including the "distance
constraints." Also we state the '"separation conditioms", necessary and
sufficieat conditions for a feasible solution to exist to the distance
constraints. It is shown in [81 that in order for the separation condi-
tions to be both necessary and sufficient for the existence of a feasible
solution to the distance constraints the network must be a tree. Thus in
this paper we restrict ourselves to the case where the network is a
tree. In Section 3 we establish preliminary results and study "tight
paths', paths which involve an auxilary network defined by the distance
constraints. The properties of Section 3 provide the basis for our
subsequent results.

In Section 4 we give necessary and sufficient conditioms for a
feasible solution to be an optimal feasible solution to a minimax
location problem, and present an example. Minimax location problems
occur when, for example, new facilities are to be placed so as to mini-
mize the maximum of travel times between given pairs of new facilities,
and given pairs of new and existing facilities. Thus, the new facilities
are to be placed so as to provide quick "service" to existing facilities,
while at the same time being able to provide service to one another. We
list as references a number of papers which comsider minimax location

problems on networks (See references (4], [5], [9], [10], [14], [15]).

PSP



In Section 5 we study a multiobjective location problem for which
it is desired to locate certain pairs of new facilities and certain
pairs of new and existing facilities as close together as possible.
Efficient location vectors to such problems are such that in order for
any new facility to be closer to some facility than it already is, it
must in turn be placed farther from some other facility. This parti-
cular multiobjective location problem is similar in spirit to a problem
in the plane using rectilinear distances studied by Wendell, Hurter and
Lowe (19], and Chalmet and Franéis (1]. Other examples of multiobjective
location problems on networks can be found in [11], [12], [13] and [16].

Also in Section 5 we employ the idea of efficient locatiom vectors
to demonstrate that any algorithm which checks the distance comstraints
for consistency (i.e., whether or not the distance constraints have a
feasible solution) is, for the worst case, at least of order m2 + mn,
where m and n are the number of new and existing facilities respectively.
We further poiant out that the "SLP" algorithm of (8] is of order m2 + mn,
so that, in a well defined sense, the algorithm is in fact a "best"
algorithm.

Throughout Sections 4 and 5 we rely heavily on properties of tight

paths, which provide the underlying unifying principles in our work.
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Section 2 Notation, Definitions, and Statements of Results.

We suppose we are given T, an imbedded undirected tree having

* : positive arc lengths, such that the distance d(x, y) between points
| X, ¥y € T is the well-defined shortest path distance and is a metric,
' as discussed in [S5]. We are given existing facility locations i
} 315 35, +-ey 3, in T. We wish to find new facility locations Xpy ey X
! in T, where X is the location of new facility i, i =1, ..., m.

As in [6], given points x,'y € T, we define the line L(x, y) as the
unicn of all points in the shorﬁest path between x and y; equivalently,
L(x,y) = {z € T: d(x,z) + d(z,y) = d(x,y)}. In addition, given a col-
lection of points P = {Pl’ Sreits Pk} contained in T, we let H(P) denote

the coanvex hull [6] of P, the smallest (imbedded) subtree of T

containing P. Corresponding to the n existing facilities and m new

facilities, we are given a set of Distance Comstraints, which for

e S A OSA

convenience we refer to as DC, as follows:

d(xj’ xk) ; ka ’ (J) k) € IB’

Cij ) (i, J) £ IC’

where the bjk and cij are known positive constants. We remark that ié

(2.1)

A

d(xi, aj)

v

it need not be the case that the set IB includes all possible pairs of

new facility indices, nor Ic includes all possible pairs of new and

v existing facility indices. |
Corresponding to DC, we define Network BC (NBC) as the undirected

n network having nodes El’ S A Nl’ “aly Nm; for every (j, k) € 1

n B’

, there is an arc (Nj’ Nk) of length bjk between nodes Nj and Nk; for

PG ot S Gl 4 .

every (i, j) ¢ IC’ there is Sn are (Ni, Ej) of length cij between nodes
Ni and Ej' We further assume that the sets IB and Ic are such that
NBC is connected, as otherwise DC decomposes into independent sets of

constraints which may be analyzed separately.

4
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Given a node-path between any two nodes fp and fq in NBC, we denote
the path by P(fp, £q) and denote the length of the path by LP(fp, fq).

We definefﬂ(fp, fq) to be the length of any shortest path in NBC between

nodes fp and fq. Subsequently, unless we specify otherwise, it should
be understood that any path we :zefer to is a simple path between some
: two nodes E_ and E .

P q

The following result is established in (8]:

o —y o ——

Theorem 2.1 DC is comnsistent if and only if
d SHE,E), 1$p<qgn. :
(ap, aq) 35%( 5 Eq) $p<qgn £2.2)

The inequalities (2.2) are termed the Separation Conditioms (8],

since each term on the right specifies an upper bound on how separate
two existing facility locations can be. Except when stated otherwise,
we assume throughout this paper that the separation conditions hold, and
thus (equivalently) DC is comsisteat.

We call a path P(Ep, Eq) between Ep and Eq in NBC a tight path if

ﬁ LP(EP, Eq) = d(ap, aq). We note that since we assume DC is consistent,
it necessarily follows if P(Ep, Eq) is a tight path, that LP(EP, Eq) =Eg{Ep, Eq)'
Any path P(Ep, Eq) for which LP(EP, Eq) > d(ap, aq) is called a

slack path, or loose path.

We say that new facility i is in a tight path if there exists at

least one tight path containing Ni. Every path containing Ni is slack

if there is no tight path which contains Ni.

The motivation for the above terminology is due to a string network

representation of NBC. This string network is also useful for obtaining
problem insights. When knots representing nodes Ep and Eq are pulled as
for apart as possible, the distance betweea the two knots isgg(Ep, Eq).

If then the string network is placed upon the tree T,

T NS




i.e. the strings only lie on arcs of T, a path is tight when it is
necessary to pull the string network tight in order to place the knots
representing Ep and Eq on ap and aq respectively, while a path is slack
if the string path must literally be slack when the two knots are placed
to coincide with a_ and aq.

A priori, one might think that the occurrence of a tight path would
be rare. However, we shall see in Sections &4 and 5 that tight paths
occur in a quite natural way whgn the separation conditions are used in
the analysis of minimax and of efficient location problems. Further,
the notion of tight paths permits the specification of necessary and

sufficient conditions for DC to have a unique solution.

Section 3 Preliminary Analysis and Properties of Tight Paths

In this section, we establish some preliminary lemmas, and then
present some properties of tight paths. We will find the following

three lemmas of use in our analysis. The proof of Lemma 3.1 can be

found in [7].

Lemma 3.1 Given a, b, x € T with d(a, b) = a + B, d(x, a) = a and

d(x, b) B, if d(y, a) £ « and d(y, b) < B, then x = y.

Lemma 3.2 Given a, b ¢ T, d(a, b) = « + B, the inequalities d(x, a) g a,
and d(x, b) ¢ B, are consistent if and only if they have a unique
solution and the inequalities hold as equalities.

Proof: By hypothesis and the triangle inequality, there exists x € T

where d(a, b) < d(a, x) + d(x, b) < a + B = d(a, b), which with the

hypotheses, clearly implies d(a, x) = a and d(x, b) = B. Lemma 3.1
implies uniqueness. The proof of the converse is trivial, and we omit
i€.

Lemma 3.3 Given X € T and d(x

e+l 0’ Xp+1) =Py * By r+1’

the inequalities
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d(xi, xi+1) < bi+1 e 1 e (3.1)

are consistent if and only if they have a unique solution and

d(xi, xi+1) = bi+1 G G0 R (3.2)
Further,

X, € L(xi-l' xi+1) R USRI (3.3)
Proof: Given (3.1) is comsistent, and using the triangle inequality and

(3:1) for any §; § = 1, ooy By

d(x,, xj) $dlxy, x) + ...# d(xj_l, xj) $hy+ ...+ bj 2 a
and

d(xj, xr+1) < d(xj, xj+1) I T o d(xr, xr+1) £ bj+1 L.t br+1 = BJ
Further, it is clear that d(xo, xr+l) = aj + Bj.

Define Yo =% » Yy = 241 and suppose

d(yi, Yi+1) < bi+1 S R SR (3.4)
Using (3.4) and the triangle inequality, we conclude for any j,
gu= L e T that d(yo, yj) < uj, and d(yj, yr+1) < ﬂj.
Since X, = Y, and X1 = Veup it follows that d(xo, yj) < aj and
d(yj, xr+1) < ﬁj' Lemma 3.2 now implies yj = xj , J =1, ...,r. Repeated
use of the triangle inequality gives b1 + bz b 'Pb!:_‘_1 = d(xo, xn+1)
< d(xo, xl) LS d(xr, xr+1) < b1 i bt+1, from which it

follows, using also (3.1), that (3.2) is true. We omit the (trivial)
proof of the comnverse.

To show (3.3), for any i, note, in either case, that

bl+b + ... +Db =d(x°,x

2 r+l )

r+l

S d(xg, %, )+ dlx,_), %) * dx s (3.5)

i+1’ Xr+1
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But then
d(xgs X;_4) £by + ... # b1
dlx; 10 ®yq) b5 * by, (3.6)
d(xj4qr X 4g) Ship ool b o

Using (3.5) and (3.6), it follows that d(xi_l, xi+1) = bi + bi+1’ which

along with d(x,

i-1° xi) = bi and d(xi, xi+1) = bi+1' implies (3.3).

We now relate unique locations to tight paths. By definition, new

facility i is uniquely located if it has the same location in every fea-

sible solution to DC. Since we later refer to a collection of facilities,

which contains possibly both existing and new facilities, being uniquely

located, we note that existing facilities are uniquely located by definition.

We now state Property 3.1, the proof of which follows from Lemmas 3.4
and 3.5 below.
Property 3.1: New facility k is uniquely located if and oaly if Nk lies
on at least ome tight path P(Ep, Eq).

As an immediate consequence of Property 3.1 we have
Corollary 3.1: DC has a unique solution if and only if Nk lies on at least
one tight path in NBC for k =1, ..., m.

We now present Lemmas 3.4 and 3.5.
Lemma 3.4: If Nk lies on at least ome tight path P(Ep, Eq) 1a NBC, then
new facility k is uniquely located.
Proof: Index the nodes in the tight path P(Ep, Eq) as
(f

fl’ fz, Wy fr+1)’ vhere fo = Ep, 3

i <
" E_ and each fj’ 2% 4 r,

0’ +1 - q =J =
is an N or E node. (We note that since no two E nodes are adjacent in

NBC, no two adjacent nodes in (fo, f ) are E nodes.)

TURERTRE T




Letting bj be the length of arc (fj-l’ fj), o IR UERTEE O
since P(Ep, Eq) is a tight path we have
d(ap, aq) = b1 + b2 i br+1' (3.7)
Since DC is consistent, there exists a locationm vector

X = (xl, Xoy +oey xm) which satisfies the distance comstraints.

Let j be arbitrary, 0 < j < r.

If £, = Nejyand £, = E(; 0, then ((3), (3+1)) ¢ I and
Wy 20 £ 6y, e ® Py S

If £ = Ej) and £, = Ny, thea ((3*1), (§)) & I and
Moo fawy) * Wepyy Yo S Sy gy P R 900

If fj = N(j) and fj+1 = N(j+1)’ then ((j), (j+1)) € IB and
WGy *Gen? €8G5, G = e L
But then, from (3.7), (3.8), (3.9), and (3.10), the hypotheses of
Lemma 3.3 are satisfied and so new facility k is uniquely located.
The conclusion now follows.
We next establish the converse of Lemma 3.4.
Lemma 3.5: If new facility k is uniquely located then Nk lies on at
least one tight path P(Ep, Eq) in NBC.
Proof: We shall show equivalently that if every path containing Nk is
slack, then there exist solutions to DC with distinct locatioas of new
facility k, where, without loss of gemerality, we let k = 1. Assume all
paths through Nl are slack. It is then the case that any such path with
"least" slack has positive slack. That is, there are existing facility
nodes, taken to be El and Ez without loss of generality, and a path
?12 = P(El’ Ez) which contains Nl, such that, with d12 = d(al, az),

B = Lflz = d;5 > 0 and, for any E_ and E, and any path Fst H ?(Es, E)

containing Nl, with dst 2 d(as, at), it is true that




Pl oLy il tn ' J o P R

e e

SN RN T (3.11)
Since 512 has least slack, it is a shortest path through Nl
joining E1 and EZ and thus LP12 =:%(E1, Nl) +d§$£2, Nl). As a notational
simplification, we let li =é%(£i, Nl), LIRS
Let DCi y 1 =1, 2, be the set of distance constraints consisting

of DC in addition to the comstraint d(xl, ai) <Y We note that any

i
feasible solution to DCi, i=1, 2, is a feasible solution to DC. In
what follows we show that by propei choice of ;s DCi is consistent,
i=1, 2, and that if Xl is feasible to DC1 and X2 is feasible to DCZ’
then xi and xi are distinct, where xi is the first component of Xi,
I =1 2.

Let NBCi be the network associated with DCi. We note that NBCi
differs from NBC only in that it contains the additional arc between
nodes Ei and Nl of length Y- Label this additiomal arc a, .

Let Es and Et be any two existing facility nodes in N'BCi and
let §st be a shortest path in NBCi of length Lﬁst’ joining Es and Ec‘

We shall show that if A is positive and if

Vthen,
- AE-Y W (3.13)

and thus, due to Theorem 2.1, DCi is consistent. We shall
show that (3.13) holds when i = 1. Due to symmetry, the case when i = 2

will follow.

If Pst contains oanly arcs which are arcs of NBC, i.e., Pst does not

contain a, then (3.13) is certainly true since the separation conditions

hold for DC. Thus suppose P__ contains ay (and hence contains Nl). 13

st st

can be decomposed as Pst = (Pl' a, PZ)’ where Pl and P2 are (possibly

10
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empty) paths joining Es and El’ and N1 and Et’ respectively. Since §st

is a shortest path, neither P1 nor P2 contains al‘ and thus P1 and P2
(when non-empty) coataia only arcs which are arcs of NBC. The leangth of
Fst is Lﬁst = LP1 L LPZ, and using (3.12) we obtain

LP_ 2 IP, +8, - B+ 1P, or
LB+ B2 EF 00+ 1P, (3.14)
Noting that the right hand side of (3.14) is the length, L?st, of a
path, Bst’ in NBC between Es and Et which coatains Nl’ (3.13) follows
from (3.11) and (3.14). (We reﬁark, to motivate the requiremeant (3.12),

that if, say, Y, < 21 - B, then Y, t £, < 21 + 22 -B=d but

2
Y, + 22 is the length of a path in NBCI, not entirely contained in NBC,
and so Theorem 2.1 would imply DC1 is incomsisteant.)

Define the positive quantity & = min{ﬁl, 22, dlz}, and let y, be
the positive quantity, which we note satisfies (3.12), defined as

¥, = max{ela, li - B}, i=1, 2. Since DCi is consistent, let X* be a

1
feasible solution to DCi, and let xi be the first component of
G

i 1 B}, and so the
; ; ; ; 1 1

triangle inequality gives d(az, xl) 2 d12 - d(al, xl) 2 d12

1 €
For x; we have d(a;, x;) £y, = max { /3, 2

max{8/3, 2, - B} = min{d, - a/3, d;, - 2, + B}. Noting that

d12 - 21 + B = 22 we obtain
b y €
d(ay, x;) 2 min{d,, = 7/5, £,}. (3.15)
For xi we have
2 o € ol
d(az, xl) $¥ max{ /3, 22 B}. (3.16)
Using the definition of &, it follows that the right hand side of (3.15) is
strictly larger than the right hand side of (3.16) and thus x; and x% are

distinct. Noting that Xf i=1, 2, is feasible to DC completes the proof.
11
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We can now draw some additional conclusions about tight paths.
Property 3.2: If P(Ep, Eq) is a tight path, then the nodes representing
facilities in the path occur with the same ordering and spacing in the
path as do the locations representing the facilities in L(ap, aq).
Further, every facility represented by a node in P(Ep, Eq) is uniquely
located.

Proof: The proof is an immediate consequence of Lemmas 3.3 and 3.4.

We emphasize the fact that the knowledge of a tight path immediately
identifies the location of ever§ new facility represented by a node on
the tight path. For example, if P(El, E3) = (El, Nl' NZ’ Ez, N3, 53) is
1 =4, c

a tight path, with €1 = 20 b12 =13 = 2, then

22 = T S39 33
d(al, 33) = 12, and so new facility 1 would be located in L(al, 33) such

that d(xl, al) 2, new facility 2 would be located in L(al, 33) such

that d(xz, al) S5, and new facility 3 would be located in L(al, a3) such
that d(x3, al) = 10.

We now consider the problem of determining when an arc lies om a
tight path. As an arc lies on a tight path if and only if it is not the
case that all paths containing the arc are slack, we consider the
equivalent problem of determining when an arc lies only on slack paths.
Property 3.3: Let DC be consistent. Let (fi’ fj) be any arc in NBC, of
length eij’ whose length is reduced by some positive amount £. Let
DCE(NBCE) be the distance constraints (network) obtained from DC(NBC) by
replacing eij by eij - g
(a) Every path containing (fi’ fj) in NBC is slack if and only if & can
be chosen (with € > 0) so that DCs is consistent.

(b) Whenever every path containing (fi’ fj) is slack, € can be chosen

(with € > 0) so that DC8 is consistent and at least one of the following

is true:




(i) at least ome path in NBC8 containing (fi’ fj) is tight;
(ii) the length of (fi’ fj) in NBC8 can be reduced to zero.
Proof: Assume € can be chosen (with &€ > 0) so that DC_ is comsisteat.
Theorem 2.1 then implies the separation conditions hold for DCa. If at
least one path, say P(Ep, Eq), in NBC which contains (fi, fj) is tight,

then d(ap, a)s= LP(EP, Eq), so that reducing eij by & would give

q
LPs(Ep’ Eq) = LP(EP, Eq) - &< d(ap, aq). But LPs(Ep' Eq) is the length of
P(EP, Eq) in NBCa, and hence a separation condition for DC8 is violated
for any €, € > 0, giving a contfadiction. Hence every path containing
(fi’ fj) in NBC is slack.
Conversely, assume every path containing (fi, fj) in NBC is slack,
so that
LP(E , E -d . >0 Bl
( b’ q) (ap aq) (3.17)
for every path P(EP, Eq) containing (fi, fj), and define &' to be the
minimum of the left side of (3.17) over all such paths, giving €' > 0.
- : ' 3 . .
Let & = min(e', eij) > 0. Since any path P(Ep, Eq) containing (fi’ fj)
has its length reduced to LPs(Ep’ Eq) = LP(EP, Eq) - £, the inequality
d < LP_(E 3.18
(ap, aq) S LP.( p’ Eq) ( )
is equivalent to
g <LA(E ,E) - d(a_, . 3.19
< Lx( s q) (ap aq) ( )
The definition of &' and ¢ < ¢' imply (3.19) is true, and so (3.18) is
true. Further, if € = ¢', then (3.19) holds as an equality for some
P(Ep, Eq), implying its length in NBCe is zero, giving (b) - (i). The
case ¢ = eij gives (b) - (ii). (Parenthetically, we note that the
largest ¢ can be and still have DCG consistent is thus clearly
max(e', eij).) As any path P(Ep, Eq) in NBC8 not containing (fi’ fj)

bas its length unchanged from that in NBC, DC consistent and

Theorem 2.1 implies the path satisfies its separation condition for DCE.
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Hence, with (3.18), the separation conditions for DC8 are satisfied, so

Theorem 2.1 implies DCa is consistent, completing the proof.

Section 4: A Minimax Location Problem Given m new facilities at locations

Xpy eeey X to be determined, existing facilities at known locations a,,
cres A, and index sets IB’ Ic as before, the minimax location problem
may be stated as follows:

(PMM) minimize 2z

subject to
Vi 9= x) <20, (5, B) e I
wij d(xi, aj) <z i e Ic.

Here the vjk and wij are given positive weights, and the problem becomes
one of locating the new facilities so as to minimize the maximum of the
weighted distances. To define the network BC of interest for this
problem, define bjk = 1/vjk for (j, k) ¢ IB’ and define cij = 1/wij for
(i, j) ¢ I.-

The following result for this problem is provea in [8]:

Lemma 4.1: The minimum objective function value for (PMM) is given by
2% = max[d(ap, aq)/jﬂ(Ep’ Eq) r L9 $qLal.

As is pointed out in (8], one way to solve the minimax problem is to
use Lemma 4.1, set z = z* in the constraints of the problem, and use the
SLP algorithm to construct a feasible solution to the coamstraints; aay
such feasible solution is optimal.

Our interest here is to explore relationships between Lemma 4.1
and tight paths. To this end, it wilil be convenient to denote by NBC(z)
the network obtained from NBC by multiplying every arc leagth in NBC by

z. We now state

14




Property 4.1: Let (X, z) be a feasible solution to (PMM).

(a) (X, z) is an optimum feasible solution to (PMM) if and only if at

| least one path in NBC(z) is tight, that is, for some P(Ej, !k)‘

1 : d(aj, ‘k) =z LP(Ej, Ek).

(b) For any such tight path, the facilities whose nodes lie on the path are
uniquely located, and their locations have the same ordering and spacing in T

as their nodes have in the corresponding path in NBC.

Proof: (a) Suppose P(Ej, Ek) is a tight path, so that

i d(aj, .k) >z LP(Ej, Ek)’ (4.1)
The definition of;g)(Ej, Ek) and z > 0 give
z LP(E;, Ey) 2 2 &(nj. E), (4.2)
while z* the minimum objective function value (by Lemma 4.1) gives
z g\(sj, E) > z* S)(Ej, E). (4.3)

Hence Lemma 4.1 gives
L, B > 4Gy, 3/ K&, EISE, B
= d(aj, ak). (4.4)
Thus we conclude the inequalities (4.1) through (4.4) all hold as
equalities, implying z = 2z*, and hence (X, z) is an optimum feasible
solution.
Conversely, suppose (X, z) is an optimum feasible solution. Lemma
4.1 then gives, for some P(Ej, Ek)’
lax[d(ap, aq)A&ﬁiEp, Eq) :1<p<q<al
= 4Gy, .k)/j)(xj, E,)
= d(aj, ak)/LP(Ej, E),
implying P(Ej, Ek) is a tight path in NBC(z).

z = z¥

(b) The proof is immediate from (a) and Properties 3.1 and 3.2.

15
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We now present an example. Suppose a tree T is given as shown in
Fig. 1, with three new facilities and three existing facilities
(at a;, ay, and a,). Ip = {(1, 2), (1, 3), (2, )}, I, = {1, 1),
2.2, G0, v, =L v, 2 10, ¥

= 1, Vi, = 10, Wyy = 2, and

13
W3 = 5. Fig. 2 illustrates NBC with bjk = l/vJ.k and cij = llwij.

It is readily verified that ;ﬁ%ﬁl, Ez) = 1.6,25‘(E1, E3) = .4,

gﬁ@sz, E3) = 1.7, d(al, 32) =5, d(al, a3) = 6, and d(az, 13) ® 7.

Thus Lemma 4.1 gives z* = max(5/1.6, 6/.4, 7/1.7] = 15 = d(a;, 2,)/§(E,, E,).
Hence, in NBC(z*), Property 4.1 implies the path (El, Nl’ N3, E3) is tight,
with total leagth (.1)(15) + (.1)(15) + (.2)(15) =6 = d(al. 33), and so

new facility 1 and new facility 3 are uniquely located at x?, xg respectively
in L(al, a3), where x§ is the point in L(al, 33) such that d(al, x{) = 1.5,
and xg is the point in L(al, 33) such that d(al, xg) = 3. It is easy to
verify that Nz lies only on loose paths in NBC(z*), and hence new facility

2 is not uniquely located. In fact, the inequalities 2d(x§, az) < 15,

1d(x%, x7) < 15, and 1d(x%, x§) < 15 permit x¥ to be any point in the

tree T. This example illustrates the fact that the knowledge of tight

paths in NBC(z) permits one to determine immediately some new facility
locations for (PMM), as well as identify those facilities which have

"critical" locations, in the sense that a change in their locatioms

would cause z* to change as well.
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Figure 2, NBC for Example Minimax Problem
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Section 5 Efficient Location Vectors

As before we suppose existing facility locations a .y 3 to be

1’
given, and that new facility locations X1y ...y X are of interest.
Given any vector of new facility locations Z = (21’ e zm), we denote
by D(Z) the vector having the entries d(zj, zk) for (j, k) € IB’ and
d(zi, aj) for (i, j) ¢ Ic, where IB and IC are given pairs of facility
indices. A location vector Z is dominated if there exists a location
vector Y such that D(Y) < D(Z) and D(Y) # D(Z). A location vector Z
which is not dominated is calle& efficient. Thus Z is efficient if and
only if D(Y) < D(Z) implies D(Y) = D(Z). Hence, whenever Z is efficieat,
if a location vector X is given such that some entries in D(X) are
(strictly) less than the corresponding entries in D(Z), then it must be
true that at least onme eatry in D(X) is (strictly) greater than the
corresponding entry in D(Z). One can consider the problem of finding
efficient location vectors as a multiobjective optimization problem,
with one optimizer for every eatry in D(Z); the optimizers can agree
that dominated location vectors are not of interest, thus leaving the
efficient location vectors to consider. Even if there is only a single
optimizer, and his objective function is strictly increasing in each
entry of D(Z), then every location vector which minimizes his objective
function is clearly efficient, so that knowledge of efficient location
vectors may facilitate a sensitivity analysis.

As an example of such an objective function, suppose positive
"weights" vjk and wij are given, and define £(Z) by £(Z) =
i{vjk d(zj, zk) : (j, k) € IB} + Z{wij d(zi, aj) $ s 3 % IC}.
Picard and Ratliff [17] have recently presented a means of finding new

facility locations in a tree to minimize f(Z), and discuss related

18
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literature, which is extensive. Whenever a single optimizer has a
continuous objective function (such as f(Z)), then the compactness of

T and the extreme value theorem asserts there will always exist a loca-
tion vector optimizing his objective function, in turn implying that
efficient location vectors always exist for nonmpathological problems.

A further discussion of multiobjective location problems on networks can
be found in [11], [12], [13], and [16].

Given a location vector Z, we let U = D(Z) and define the distance
constraints of interest by D(X) é U, where the entries in U define the
bjk and cij by bjk = d(zj, zk) for (j, k) ¢ IB’ and cij = d(zi, aj) for
(4: 1) & Ic. We use the bjk and cij to define NBC in the customary
manner. As before, we may assume NBC is connected, for otherwise the
problem of finding efficient location vectors decomposes into independent
subproblems. Further, we note that DC is always consistent, as Z is
certainly feasible to DC, and hence, by Theorem 2.1, the separation
conditions are always satisfied. For convenience, for any location
vector Z, we denote by Ai(Z) the collection of locations of uniquely
located facilities whose nodes are adjacent to Ni in NBC. We denote
by H[Ai(Z)] the convex hull of Ai(Z), the imbedding of the smallest
subtree of T spanning all the elements of Ai(Z).

With the above definitions we can present a family of equivalent
conditions for a location vector Z to be efficient.

Property 5.1: Given a location vector Z used to define DC and NBC, the
following are equivalent:
(a) Z is efficient,
(b) Each Ni is in at least one tight path in NBC,
(¢) Z is the unique solution to DC,
(d) z, € H[Ai(Z)] ford &1, iy M
19
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g:zggz The equivalence of (b) and (c) is a direct consequence of
Property 3.1 and the fact that Z is always a feasible solution to DC,
while (c¢) clearly implies (a). To show (a) implies (b), suppose some Ni
is not in a tight path. Property 3.3 then implies some entry in U = D(2)
can be reduced and the resultant distance constraints will still have a
feasible solution, say Y. But then clearly D(Y) < D(Z) aand D(Y) # D(2),
contradicting the fact that Z is efficient. Hence (a), (b), and (c) are
equivalent. It can be seen that the proof will be complete if we show
(b) implies (d) and (d) implies )

To show (b) implies (d), suppose Ni is in some tight path P. Let
f1 and f2 be the nodes adjacent to Ni in P, so that ((fl, Ni), (Ni, fz))
is a subpath of P. Since fl and f2 are in the tight path P, by Property
3.2 the facilities represented by f1 and f2 are uniquely located. We
may let Y1 and Yy denote the unique locatioms of f1 and f2 respectively.
Thus it is clear that Y1 and y, are elements of Ai(Z). By Property 3.2,
z, € L(yl, y2), and by definition of the convex hull, L(YI’ y2)<:.H(Ai(Z)).
Thus it follows that z, ¢ H(Ai(Z)). To show (d) implies (c), suppose
z, € H[Ai(Z)] and let fl and fz be nodes adjacent to Ni in NBC, where
f1 and f2 represent facilities with unique locations ¥, and Yy respectively,
such that z, ¢ L(yl, yz)ci T. Thus d(YI’ yz) = d(yl, zi) + d(zi, yz).
Now for any feasible solution X to DC we know d(yl, xi) < d(yl, zi) and
d(yz, xi) < d(yz, zi). But then because f1 and fz are uniquely located,
Lemma 3.2 implies X, =2y, for i =1, ..., m. Hence X = Z, so Z is the
unique solution to DC, completing the proof.

As an example, suppose we again have three existing and three new

facilities, and use the tree of Fig. 1. Suppose the entries of D(Z) are

20
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given by d(zl, al), d(zl, a3), d(zz, al), d(zz, a3), d(z3, al), d(z3, az)
d(zl, 22), d(zl, 23), and d(zz, 23). Suppose the location vector Z is

as shown in Fig. 3. Fig. 3 and the above distances gives NBC as shown
in Fig. 4. As the path (EI’ Nl’ E3) in NBC has length 6 = d(al, 33),

N1 is on a tight path. Further, the path (El’ N2,
6 = d(al, a3), so N2 is on a tight path. However, it can be verified

E3) also has length

that every path containing N3 is slack, so the vector Z = (zl, z,, 23),

is dominated. It is easily verified however that if zq is changed so

that either zy € L(al, az) or 23.5 L(zl, 22), that the new location vector
will be efficient, as N3 is on at least ome tight path, or, equivaleatly,
zy € H({al, 3y, Zy, zz}).

As a fipal application of the idea of efficiency, let us choose an
efficient location vector problem and an efficient location vector Z for
which U = D(Z) will have m(m-1)/2 + mn entries. Suppose we subtract any
positive quantity & from an arbitrary eantry in U to obtain a vector Ue’
giving Ue < U and Ue # U. The distance comstraints D(X) < U8 must then
be inconsistent, as else X would dominate Z. Now given the constraints
D(X) < Us’ if we do not know which entry in U has been reduced by £ to
obtain Ue, then any algorithm we apply to check if D(X) < U8 is comsistent
must examine all of the m(m=-1)/2 + mn comnstraints, since any one of the
constraints can cause inconsistency. Hence any algorithm to determine
if D(X) < U, is consistent is at least of order m? + mn. Thus we have
Property 5.2: Any algorithm to determine whether or not the distance
constraints of Section 2 are consisteat is (for the worst case) at least
of order nz + mn.

As is pointed out in (8], the "Sequential Location Procedure" presented

in [8] to check the comsistency of DC is of order n2 + mn, and thus
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Property 5.2 implies it is in fact an algorithm of lowest order for

checking consistency.
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